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A three-dimensional linear stability analysis of a baroclinic flow for Richardson 
number Ri of order unity is presented. The model considered is a thin, horizontal, 
rotating fluid layer which is subjected to horizontal and vertical temperature 
gradients. The basic state is a Hadley cell which is a solution of the Navier-Stokes 
and energy equations and contains both Ekman and thermal boundary layers 
adjacent to the rigid boundaries; it  is given in closed form. The stability analysis is 
also based on the Navier-Stokes and energy equations ; and perturbations possessing 
zonal, meridional and vertical structures were considered. Numerical methods were 
developed for the solution of the stability problem, which results in an ordinary 
differential eigenvalue problem. The objectives of this work were to extend the 
previous theoretical work on three-dimensional baroclinic instability for small Ri to 
a more realistic model involving the Prandtl number CT and the Ekman number E ,  
and to finite growth rates and a wider range of the zonal wavenumber. The study 
covers ranges of 0.135 < Ri < 1.1 ,  0.2 < a < 5.0, and 2 x lop4 < E < 2 x lop3. For 
the cases computed for E = and a + 1 ,  we found that conventional baroclinic 
instability dominates for Ri > 0.825 and symmetric baroclinic instability dominates 
for Ri < 0.675. However, for E > 5 x  and a = 1 in the range 0.3 < Ri < 0.8, 
conventional baroclinic instability always dominates. Further, we found in general 
that the symmetric modes of maximum growth are not purely symmetric but have 
weak zonal structure. This means that the wavefronts are inclined at a small angle 
to the zonal direction. The results also show that as E decreases the zonal structure 
of the symmetric modes of maximum growth rate also decreases. We found that when 
zonal structure is permitted the critical Richardson number for marginal stability 
is increased, but by only a small amount above the value for pure symmetric 
instability. Because these modes do not substantially alter the results for pure 
symmetric baroclinic instability and because their zonal structure is weak, i t  is 
unlikely that they represent a new type of instability. 

1. Introduction 
Stably stratified baroclinic flow can be destabilized by several different mechanisms. 

The most extensively studied of these instabilities is usually referred to simply as 
baroclinic instability. For this type of instability the Richardson number Ri is much 
greater than unity, and the quasigeostrophic equations (Pedlosky 1979) are valid. 
The perturbations of maximum growth rate have a wavelength in the zonal 
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(azimuthal) direction, and, in the absence of horizontal shear, the gravest possible 
structure in the meridional direction (Charney 1947 ; Eady 1949). This instability has 
been observed in the laboratory, and is the cause of mid-latitude wave cyclones 
(Lorenz 1967; Hide & Mason 1975). 

A second type of instability, known as symmetric baroclinic instability, occurs for 
Ri of order unity, and requires a more general set of equations than the quasigeo- 
strophic set. In this case, the perturbations of maximum growth rate have meridional 
structure but no, or only weak, zonal structure. The study presented in this paper 
is concerned with this type of instability. Since this instability occurs in only a small 
range of Ri, there would appear to be few geophysical applications. However, Stone 
(1967) conjectured that the banded structure of Jupiter’s atmosphere is caused by 
this instability, and Bennets & Hoskins (1979) and Emanuel (1979) suggested that 
rain bands and squall lines may be due to this instability. Two of the earliest analyses 
of symmetric baroclinic instability are those of Solberg (1936) and Kuo (1956). In 
these papers purely two-dimensional perturbations with no zonal structure were 
considered. 

Stone (1966, 1970, 1971) was the first to examine the stability of baroclinic flow 
for small Ri with respect to three-dimensional perturbations. For the basic state Stone 
took a plane parallel baroclinic flow with constant temperature gradients and a 
constant vertical shear consistent with the thermal wind balance. Horizontal shear 
was excluded. Viscous and thermal diffusion effects were neglected in both the basic 
state and perturbation analyses. In  this paper such a basic state will be referred to 
as the Eady basic state. Stone found that conventional baroclinic instability 
dominates if Ri 2 0.95, symmetric baroclinic instability dominates if 
0.25 < Ri < 0.95, and Kelvin-Helmholtz instability dominates if Ri < 0.25. For 
symmetric instability, Stone found that the wavelength of maximum growth rate is 
zero. I t  cannot be concluded with reasonable certainty that symmetric baroclinic 
instability has been observed in the laboratory. Stone’s results motivated a laboratory 
search, and some evidence of the predicted meridional structure was observed (Stone 
et al. 1969; Hadlock, Na & Stone 1972). However, Stone’s theoretical model was 
somewhat different from the experimental realization and conclusive results were not 
obtained. Calman (1977) attributed certain experimental observations to symmetric 
baroclinic instability. However, there were large discrepancies with the theory. 

In the theoretical studies on symmetric baroclinic instability which followed 
Stone’s analyses, workers added viscous and thermal effects to make the models more 
realistic. However, in all but one of these studies (Busse & Chen 1981 ; see below), 
attention was restricted to two-dimensional perturbations with no zonal structure. 
McIntyre (1970) considered an Eady basic state with viscosity and thermal diffusivity 
included in the perturbation analysis. He chose an unbounded model. McIntyre 
found, in the absence of horizontal shear, that, for the Prandtl number u equal to 
unity, the critical Richardson number Ri, is also equal to unity, and, for IT $: 1, Ri, 
increases above unity. These results are shown in figure 1 (a).  Thus double-diffusive 
effects further destabilize the flow. McIntyre’s choice of a lengthscale and unbounded 
model were such that the Ekman number E disappears formally from his problem. 
Emanuel(l979) considered the same model as McIntyre but for a vertically bounded 
flow. Emanuel studied (i) hydrostatic disturbances and (ii) non-hydrostatic disturb- 
ances in a neutrally stratified fluid. He investigated only neutral modes by invoking 
the principle of exchange of stabilities. For both of the above cases Emanuel found 
that Ri, depends on both u and E. He also established that the wavelength of the 
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FIGURE 1. (a )  The critical Richardson number as a function of the Prandtl number: __ according 
to McIntyre (1970) ; 0, according to Antar &Fowlis (1982). ( b )  Marginal stability curves as functions 
of E and Ri for three values of CT and for 1 = 4. The dashed curves are McIntyre’s results. 

most-unstable normal mode is determined primarily by the depth of the fluid and 
the slopes of the isentropic surfaces rather than by the diffusive properties of the fluid. 

In  all of the theoretical studies cited above, the Eady basic state was used. I n  an 
experimental apparatus whose upper and lower boundaries are stationary, such a 
basic state is a good approximation in the interior of the fluid only; it is not a good 
approximation near the boundaries especially when E is not vanishingly small. Antar 
& Fowlis (1982 ; hereinafter referred to as AF) presented a two-dimensional theoretical 
study of symmetric baroclinic instability for a fluid contained between two horizontal 
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plates of infinite extent. The analysis used a realistic basic state which was obtained 
as an analytical solution of the Navier-Stokes and energy equations. This solution 
included both the Ekman and thermal layers adjacent to the boundaries. The 
stability analysis also included viscous and thermal diffusion effects and was 
performed numerically. AF found that the instability sets in when Ri is close to unity 
and that Ri is a strong function of both u and E. Figure 1 (a)  shows these results for 
Ri, as a function of u for fixed E and compares their results with those found by 
McIntyre (1970). For fixed u, AF found that Ri, decreases with increasing E until 
a critical value of E is reached beyond which the flow is stable. These results are shown 
in figure 1 (b) .  The analysis was not restricted to critical values, and the influence of 
IS and E on the growth rate was also determined. For the range of parameter values 
considered, the most unstable wavelength was about half the depth. The nonlinear 
basic state was also used by Antar & Fowlis (1981) in a study of the conventional 
baroclinic instability. More exhaustive discussions of the previous theoretical work 
dealing with two-dimensional studies of symmetric baroclinic instability have been 
given by Emanuel (1979) and AF. 

Recently Busse & Chen (1981) extended Stone’s studies by including thermal and 
viscous diffusion effects in a three-dimensional analysis of symmetric baroclinic 
instability. The basic state was an Eady basic state in which the horizontal 
boundaries moved consistently with the thermal wind to eliminate Ekman layers on 
the boundaries. Bussc & Chen confined their analysis to  critical values, and they 
obtained their solution through an expansion in the zonal wavenumber k. Thus their 
solution is restricted to  small k. They showed, in the limit of small E ,  that  the mode 
of symmetric instability a t  maximum Ri, exhibits an angle of inclination with the 
direction of the basic state flow. And they showed further that  the sign of the angle 
depends upon whether u 5 1. They also showed that the range of Ri for which the 
instability occurs is increased beyond the limits of the two-dimensional problem 
solved by McIntyre (1970). 

The objectives of the present study were to extend the previous work on 
three-dimensional baroclinic instability for Ri = O(1). The work of Stone (1966,1970, 
1971) is extended to  a more realistic model involving viscous and thermal dissipation 
and the work of Busse & Chen (1981) to  finite growth rates and a wider range of the 
zonal wavenumber. The basic state chosen was that used previously by Antar & 
Fowlis (1981) and AF. The stability analysis was performed through numerical 
integration of the perturbation equations. Critical values and growth rates are 
presented. 

In  $2 the equations and solution of the basic state are presented. Also in $2 the 
equations and method of solution for the stability analysis are described. In  $3  the 
results of the stability analysis are presented and discussed. The main results are 
summarized in 54. 

2. The equations and their solution 
2.1. The basic state 

We consider a Boussinesq fluid confined between two horizontal plates which are set 
a distance d apart. The coordinate system used is rectangular Cartesian with axes 
(x, y, z )  corresponding to the eastward, northward, and vertical directions respectively, 
with the origin set at mid-depth between the plates. The plates and the fluid are 
assumed to extend to infinity in the x- and y-directions. Also, the plates a,nd the fluid 
are taken to  rotate as a whole about the vertical axis with a constant angular velocity, 
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FIQURE 2. A sketch of the model. 

SZ. To maintain baroclinicity, a temperature distribution is imposed on both plates 
in which the temperature is made to decrease in the y-direction. Also, to ensure that 
the vertical stratification, and hence the Richardson number, can be arbitrarily and 
externally adjusted, the temperature of both the upper and lower plates are set to 
differ uniformly by a constant amount AT for all y. A sketch of the model considered 
is shown in figure 2.  

The basic-state velocity and temperature fields are governed by the Navier-Stokes, 
energy and mass-conservation equations. Centrifugal effects are neglected. These 
equations, in dimensionless form, for the configuration described above, and for a 
two-dimensional steady state in a rotating reference frame, can be reduced to the 
following : 

where V = ( U ,  V )  is the velocity vector, p the pressure, T the temperature and 

are a thermal Rossby number, the Ekman number, and the Prandtl number 
respectively. I n  (2.1)-(2.4), length, time, velocity and temperature were made 
dimensionless using d, Q-l,  cqdy/SZ and yd respectively. a is the coefficient of thermal 
expansion, y is the imposed horizontal boundary temperature gradient, and g is the 
acceleration due to gravity. A further assumption used in deriving (2.1)-(2.4) is that, 
throughout the region of interest in the fluid, the vertical velocity component W is 
negligible. 
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FIGURE 3(a ,  b) .  For caption see facing page. 
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FIQURE 3. (a) The basic-state zonal velocity profile as a function of height according to (2.6) for 
three values of the Ekman number. (b) The meridional velocity profile. (c) The temperature profile 
for y = 0, u = 1, E = 1 and AT = 0. 

The solution to (2.1)-(2.4) that is consistent with the no-slip and the perfectly 
conducting boundary conditions at the solid boundaries, i.e. 

is given by 
U = V = 0 ,  T = k i A T - 9  (Z = +!j), (2.5) 

(2.6a) 

V(Z) = -&(4, (2.6b) 

T ( y , z )  = - y + ( A T + & ~ ) z - & e f ( z ) ,  ( 2 . 6 ~ )  

U(z)  = -Qf(z)++z, 

where 
f(z) = [cash R(z +a) cos R(z - 2j) - cash R(z - 4) cos R(z +2j)]/h(R), 

g(z )  = [sinh R(z+!j) sin R(z-2j) - sinh R(z -#) sin R(z +#)] /h(R) ,  

h(R) = sinh2 +R + sin2 !jR, 
R = E-4. 

An assumption made in obtaining the above solutions is that the dimensionless 
horizontal temperature gradient a T / a y  is constant and equal to - 1 throughout the 
fluid. The assumptions and limitations of this model are discussed more fully in Antar 
& Fowlis (1981). 

The velocity and temperature profiles given by expressions (2.6) are shown in figure 
3 for representative values of E,  e ,  u and AT. 

2.2. The perturbation equations 

To study the stability of the stationary basic state, the dependent variables (velocity, 
temperature and pressure) are first decomposed into basic-state and perturbation 
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components. The equations governing the perturbation components are obtained by 
substituting the variables into the Navier-Stokes and energy equations, subtracting 
the basic state, and linearizing. Since the resulting equations are linear, with 
coefficients depending on z alone, they admit of separable solutions of the form 

[U’,V’>W’,~’,P’I = [u(z),vU(Z),e(z),p(Z)lexP [i(kx+ly-wt)l, 

where u’(u‘,v‘,w‘), p‘ and 8’ are the perturbation velocity vector, pressure, and 
temperature respectively. 

This solution represents a travelling oblique wave with frequency w and wavenumber 
components k and Z in the zonal and the meridional directions respectively. After 
substituting the above solution into the governing perturbation equations and 
eliminating the pressure, the linearized momentum and energy equations can be 
written as 

i[w -e(kU+ ZV)] V2w + ie(k D2 V +  Z D2U) w - 2i(k Dv- 1 Du) = - EV2V2w + m28, 

i[w - e(kU+ ZV)] [m2v- iZ Dw] - ekw(k D V -  ZDU) - 2ik Dw = -EV2(m2v- iZDw), 

(2.7) 

(2.8) 

(2.9) i@w- e(kU+ ZV)] 8 + ea(v- w DT) = -EV28, 
where 

Dw+iku+iZv = 0, 

V2 = D2 - m2, 

m2 = k 2  + 1 2 ,  

and D = d/dz is a differential operator. I n  the above U ,  V and T a r e  the basic-state 
velocity and temperature fields, which are non-simple functions of z. The perturbation 
velocity and temperature vanish on the plates, implying that 

w = D w = v = $ = O  ( z = + ’  - 2 ) .  (2.10) 

The problem defined by (2.7)-(2.9) with the boundary conditions (2.10) defines an 
eigenvalue problem of the form 

B ( E , e ,  W ,  AT, k,  1 , w )  = 0, (2.11) 

where the frequency w is in general complex for the temporal stability problem. The 
basic state is stable or unstable depending on whether Im ( w )  = wi < 0 or wi > 0 
respectively. For marginal stability for which wi = 0, Re ( w )  = w,, and either E or 
e are chosen as the eigenvalues. I n  most of the results described in $3, the growth 
rate wi, was used as a function of any of the parameters to  determine the most 
unstable mode. 

As indicated in fj 1, previous studies of symmetric baroclinic instability have 
selected the Richardson number as a parameter. However, owing to the specific 
non-dimensionalization chosen for this study, Ri does not appear as an explicit 
parameter in (2.11). Ri is defined as the ratio of the vertical stratification to the square 
of the shear, i.e. 

(2.12) 

where the asterisk denotes a dimensional quantity. Since in the present problem this 
definition implies a variable Ri as a function of height, a more convenient definition 
of Ri is its value a t  mid-depth in the channel. Substituting the values of the 
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FIGURE 4. The temperature profile for E = 

temperature and velocity gradients of the basic state (expressions (2.6)) a t  z = 0 into 
the above definition, we obtain 

Ri, = 4€-'(AT+aae)+0(RebR), (2.13) 

which is a constant defined exclusively by the basic state. Note that for E < 10+ 
(i.e. R > lo), which is the range of E for all the calculations presented in $3, the last 
term in (2.13) is negligible. Since Ri, is a complicated function of the basic state, care 
is required in selecting values of the basic state parameters to achieve desired values 
of Ri,. (From this point on we shall drop the suffix from Ri,.) Examination of (2.13) 
reveals that, to obtain values of Ri close to unity, AT must be greater or less than 
zero depending on whether CT < 1 or a > 1 respectively. Note that for some values 
of AT < 0 there does exist a large region in the interior of the fluid with stable 
stratification. This is shown in figure 4, which is based on parameter values for the 
computations whose results are discussed in $3. This problem of the selection of the 
basic-state parameters to achieve specific values of Ri is discussed more fully in AF. 

Note that setting k = 0 in the perturbation equations allows for only axisymmetric 
waves propagating in the meridional direction, and setting 1 = 0 allows for only waves 
propagating in the zonal direction. 

2.3. Method of solution 
The governing differential equations (2.7)-(2.9) with boundary conditions (2.10) form 
an eigenvalue problem for which a non-trivial solution should be available. Owing 
to the complexity of the coefficients of these equations (a consequence of the non- 
simple basic state), a closed-form solution cannot be found. The only way to solve this 
problem for the ranges of all the parameters involved is by numerical means. There 
are basically two direct methods for the numerical solution of differential eigenvalue 
problems. These are the matrix and the shooting methods. Owing to the complexity 
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of our system (viz a system of coupled, eight ordinary differential equations), the 
shooting technique is the most straightforward to implement. For small values of the 
Ekman number, the shooting procedure can be successful only if it is used in 
conjunction with a filtering or orthonormalization scheme (see e.g. Conte 1966). 
Otherwise the inevitable presence of the rapidly growing solution of the differential 
system can quickly render the linearly independent solution numerically dependent. 

For the solution of the present eigenvalue problem, a computer code was developed 
with an eighth-order variable-step Runge-Kutta-Fehlberg initial-value integrator. 
For the iteration procedure a Newton-Raphson method was used, and the ortho- 
normalization process was implemented at each integration step. All of the eigen- 
values that are presented in $3  were produced with a relative tolerance of in the 
iteration process (i.e. all of the eigenvalues presented are correct up to four significant 
figures). For small enough Ekman numbers, the Ekman and the thermal layers along 
the plates are very thin, and the code was made to take at least 10 steps within each 
layer to assure adequate representation of these layers. Normally this method 
requires an initial guess for the eigenvalue, and the whole process for obtaining the 
results is started by first trying several guesses. Once a convergence on an eigenvalue 
was obtained, that eigenvalue was used as the initial estimate for obtaining a 
neighbouring one, and the process was repeated. Typically, if an eigenvalue existed, 
convergence was achieved in under 10 iterations. 

3. Results and discussion 
In this section we present the results of a three-dimensional study of baroclinic 

instability for Ri = O( 1). All of the results were obtained using the basic state defined 
by (2.6) and by means of the solution of the eigenvalue problem described by 
(2.7)-(2.10) and represented functionally by (2.1 1).  We begin by presenting plots of 
the growth rate wi, as a function of the zonal wavenumber k for selected values of 
the meridional wavenumber 1 for a range of values of Ri and for fixed values of u7 

AT and E .  The values of AT were selected so that Ri = O(1) (see $2). For fixed values 
of u) AT and E ,  Ri was varied by varying B .  We continue by presenting plots of the 
growth rate maxima wi(max), and the corresponding k(max), as functions of Ri for 
selected values of 1 and for a range of values of u. The actual values of n chosen are 
in the range 0.2 < CT < 5.0, which includes real liquids. For all the above results 
E = lo+. Next we present plots of wi versus k for selected values of 1, for fixed values 
of Ri and u and for a range of values of E. The values of E chosen are in the range 
2 x lo-* < E < 2 x The previous work on two-dimensional instability (AF) 
showed that, for the smaller values of E in this range, Ri, is close to its asymptotic 
limit. The use of still smaller values of E would have substantially increased the 
computing time (see $2). The range of values of E is realistic for typical laboratory 
apparatus and liquids. 

and 
AT = - 1.5. Figure 5 for Ri = 0.93 shows that pure symmetric waves (k = 0) do grow 
and that their growth rates increase with increasing 1 reaching a maximum at about 
1 = 8 and then decrease for a further increase in 1. However, the overall maximum 
growth rate is associated with the conventional baroclinic instability mechanism 
(2 = 0). The mode (k = 0.88, I = 0) has the maximum growth rate. Figure 6 shows 
that, for Ri = 0.80, the growth rates for the symmetric modes have increased 
substantially and are comparable to the growth rates of the purely zonal waves 

Figures 5-7 show wi versus k for three values of Ri, CT = 2, E = 
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FIGURE 5. The growth rates as a function of k for Ri = 0.93, B = 5.6, u = 2, 
AT = - 1.5, E = and selected values of 1. 

k 

FIGURE 6. The growth rates as a function of k for Ri = 0.80, E = 5.0, u = 2, 
AT = - 1.5, E = and selected values of 1. 

( 1  = 0). The maximum value of wi shown in the figure is oi = 0.399 for k = 0.25,1= 8, 
which is to  be compared with wi = 0.394 for k = 1.0 and 1 = 0. 

I n  figure 6 we have shown only the curves for 1 up to 1 = 10. This is because we 
know, for the parameter values of figure 6, that  the maximum value of wi for the 
pure symmetric modes occurs a t  1 = 8.8. This result is shown in figure 8. The values 
of wi decrease further as 1 increases beyond 10, making additional curves unnecessary. 
As we pointed out above, for Ri = 0.80 the maximum growth rates of the symmetric 
and conventional baroclinic modes are about the same. Stone (1970) found for his 
inviscid model that  the maximum growth rates are equal for Ri = 0.95. For all of 
the unstable modes examined in this study i t  was found that the propagation speed 
is equal to the basic-state mid-depth speed, namely U = 0 (i.e., for all wi > 0, or = 0). 

Note in figure 6 that  the growth-rate maximum does not occur for a pure symmetric 
wave; k at  the maximum value is small but not zero. An analogous result was found 
earlier by Busse & Chen (1981) for the waves a t  marginal stability (see 9 1). To avoid 
confusion in the discussion to  follow, we define symmetric instability to  include 
unstable modes for which k is small as well as zero. Further, for simplicity we shall 
refer to conventional baroclinic instability (I = 0) as zonal instability. In  addition the 
term preferred mode will be used to mean the mode of maximum growth rate. 

Figure 7 for Ri = 0.50 shows the effect on wi of a further decrease in Ri. The growth 
rates for the symmetric modes have continued to increase and are now considerably 
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FIGURE 8. The growth rates as a function of 1 at k = 0 for u = 2.0, AT = - 1.5, and three 
values of E: --, Ri = 0.5; ----,  Ri = 0.8. 
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FIGURE 9. (a )  The maximum values of wi as a function of Ri for CT = 2.0, AT.= - 1.5, E = lop3 and 
several values of 1. ( b )  The values of k at maximum wi as a function of Ri for the conditions of (a) .  

greater than those for the pure zonal modes. I n  this figure we have shown only the 
curves for 1 up to  1 = 10. Again this is because we know, for the values of the 
parameters of this figure, that  the maximum of wi for the pure symmetric modes 
occurs a t  1 = 10.2. This result is shown in figure 8. For the data in figure 7 the 
maximum growth rate occurs for k z 0.05 and 1 = 10. Note again that the maximum 
does not occur for k = 0. This is clearly shown in the inset in figure 7 ,  which is a replot 
of the growth rate for the 1 = 10 wave with a stretched ordinate. This means that 
the preferred mode of symmetric baroclinic instability exhibits a slight angle of 
inclination with the direction of the basic state flow. This angle is given approximately 
by k / l .  

A further reduction in Ri, for this set of parameters, leads to an increase in wir for 
both k and 1, but the overall functional dependence of wi on k and 1 remains essentially 
the same as the results for Ri = 0.5. This result is shown in figure 9 ( a ) ,  which is a 
plot of the growth rate maxima w,(max) versus Ri for the case (r = 2.0, A T  = - 1.5, 
E = and for several values of 1. This figure summarizes the relevant results from 



436 B. N .  Antar and W.  W. Fowlis 

I I I I I I I I 1 I I I J 

0 0.5 1 
Ri 

I f -  10 a -+ 
I , 

0 1 
Ri  

FIGURE 10. (a )  The maximum values of wi as a function of Ri for 
and several values of 1. (b )  The values of k at maximum wi as a function of Ri for the conditions 
of (a) .  

= 5.0, AT = -4.5, E = 

figures 5-7. The general trend is for wi(max) to increase with decreasing Ri for all 
the symmetric modes ( I  + 0). However, wi(max) for the zonal mode is not much 
affected by the reduction in Ri. Figure 9 ( a )  also shows the value of Ri at which the 
symmetric modes first become dominant, Ri,. Ri, is defined as the largest value of 
Ri at which any curve for which 1 + 0 intersects the 1 = 0 curve. Figure 9 ( b )  is a plot 
of the zonal wavenumber k(max) corresponding to wi versus Ri for the same case as 
figure 9(a) .  Note that the value of k(max) corresponding to the largest wi(max) curve 
(the 1 = 10 curve) decreases slowly with decreasing Ri, but does not become zero for 
small Ri. This means that the dominant symmetric modes possess zonal structure 
which is only weakly dependent on Ri. 

We now present results for another value of u. Figures 10(a, b )  summarize the 
behaviour of wi and k as functions of Ri for u = 5.0, AT = -4.5 and E = Figure 
10(a) shows wi(max) versus Ri for several values of 1. The curves show the same 
general trends as those in figure 9 (a) .  I n  the range Ri < Ri, for which the symmetric 



FIGURE 

Three-dimensional baroclinic instability for small Richardson number 

0 0.5 1 
Ri 

0 
Ri 
0.5 1 .o 
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Wa and 
several values of 1. ( b )  The values of k at maximum oi as a function of Ri for the conditions of (a). 

modes are dominant, figure 10 (a )  shows that the shortest meridional waves possess 
the largest values of oi(max). However, we know, from computations whose results 
are not given here, that, for still larger values of 1, wi(max) decreases. The maximum 
ofwi(max) occurs for 1 w 10, and this 1 is a weak function of Ri. For the case presented 
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U Ri, AT E 

5.0 0.825 -4.5 10-3 
2.0 0.80 - 1.5 10-3 
0.5 0.70 0.2 10-3 
0.2 0.676 0.5 10-3 

TABLE 1. The values of Ri, as a function of the Prandtl number 

in figure 10 Ri, x 0.825, which is slightly larger than the value for u = 2.0 (see figure 
9a). Figure 10(b) shows k(max) versus Ri. Again it is clear that  the preferred 
symmetric modes possess some zonal structure which for small Ri is only weakly 
dependent on Ri. We conclude from figures 9 and 10, for u > 1 and in the range of 
(T examined, that there are no rapid changes in the character of the preferred modes 
as a function of Ri. Ri, is apparently a weak function of u. 

Stone (1966, 1970) found for his non-geostrophic non-dissipative model that the 
preferred mode of instability changes a t  Ri = 0.25 from symmetric instability to 
Kelvin-Helmholtz instability (see 0 1 ) .  For the parameters of figure 10 we conducted 
growth-rate calculations for Ri = 0.135. The results of these calculations are included 
in figure 10, and they show that symmetric instability is preferred. In  considering 
this apparent discrepancy it should be noted that Stone’s conclusion was based on 
growth-rate behaviour for asymptotically large k; and, since growth rates for large 
k for our model were not computed, we cannot say anything definitive about such 
a transition for our model. However, for non-hydrostatic and non-dissipative models 
both Tokioka (1970) and Stone (1971) found that this transition did not occur. Thus 
it seems most probable that for our non-hydrostatic and dissipative model the 
transition is still less likely to occur. The earlier investigation of our model for pure 
symmetric modes (AF) revealed that the growth rates for these modes continues to 
increase as Ri is decreased through zero. 

We now present results for (T < 1. Figure 11 (a) shows the variation of wi(max) with 
Ri for several values of 1 and for u = 0.2, AT = 0.5 and E = Again the 
symmetric modes are dominant in a range of Ri < Ri,, but there are some substantial 
differences between this case and the results for (T > 1. The values of wi(max) increase 
more rapidly with decreasing Ri and there is not much difference among the curves 
for 1 = 6, 8 and 10, especially for small Ri. However, like the results for u > 1, the 
curve for the zonal mode is only weakly dependent on Ri. For this case Ri, x 0.675. 
From further calculations, which are not shown here, we found that, for u = 0.5, 
AT = 0.2 and E = low3, Ri, x 0.7. The values of Ri, for all of the cases calculated are 
shown in table 1 .  Figure 11 ( b )  shows the variation of k(max) with Ri for several values 
of 1. I n  this case we see a difference from the results for (T > 1 ; the values of k(max) 
are negative. A negative value of k implies a change in the direction of the x-component 
of the wavenumber vector. Thus the inclination of the symmetric waves with respect 
to the basic-state flow has changed signs. This result for the modes of maximum 
growth rate is analogous to that found by Busse & Chen (1981) for the marginally 
stable waves (see $1) .  Also of note is the rapid increase of k(max) for decreasing Ri. 

We now turn our attention to results for u = 1 .O. What we found was unexpected. 
Figures 12(a, b )  summarize the results for the case u = 1.0, AT = -0.2 and E = 
Figure 12 (a )  shows the variation of w,(max) with Ri for several values of 1. The curves 
show several important differences from all of the previous cases for both u > 1 and 
u < 1 .  Note first, for the range of values of Ri examined, that there does not exist 
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FIGURE 12. (a) The maximum values of wi as a function of Ri for cr = 1.0, AT = -0.2, E = 
and several values of 1. (b) The values of k at maximum wi as a function of Ri for the conditions 
of (a). 

a value of Ri a t  which the transition from zonal to symmetric instability occurs. The 
zonal mode of maximum growth rate for Ri > 0.9 continues to be the preferred mode 
as Ri is decreased. Note also that the values of oi(max) show a monotonic decrease 
as Ri is decreased below 0.8. Note further that the values of wi(max) decrease with 
increasing 1 throughout the range shown. Another difference is that  most of the wi 
versus k curves for different values of 1 and for specific values of Ri (not shown) show 
two local maxima, one in the positive range of k and the other in the negative range. 
(In plotting figure 12 (a )  we used the maximum values of wi(max).) This result is shown 
in figure 12(b ) ,  which shows the variation of k(max) with Ri for several values of 1. 
Note for the smaller wavelengths of the symmetric modes and for the larger values 
of Ri that the growth-rate maxima shift from negative to positive values of k as Ri 
is decreased. Busse & Chen (1981) predicted, for c = 1 and for marginally stable 
waves and small k, that the first-order correction to the value of Ri, is zero, 
indicating that the angle of inclination of the waves with respect to the basic-state 
flow is zero to that order. We have found from further calculations for Ri = 0.5. whose 
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FIGURE 13. The growth rates mi as a function of k for a = 2,  AT = - 1.5 and Ri = 0.5 

for (a) E = 5 x low4, ( b )  ( c )  2 x 

results are not presented here, that  k for the most unstable symmetric mode is very 
close to zero for u = 1.1. Clearly this result cannot be taken as a general 
conclusion on the value of u at which the transition from positive to negative k 
occurs. It is obvious that this value of u is a complicated function of at least Ri and 
E. However, a comprehensive study of this dependence is beyond the scope of the 
present study. On the other hand, based on our experience with this case and from 
the analytical work of Busse & Chen, we definitely expect this value of the transition 
Prandtl number to be in general very close to unity. 

To investigate further the effects of viscous dissipation on symmetric baroclinic 
instability, we now present results for different values of the Ekman number. Figure 
13 shows the growth rates of the most-unstable waves as a function of k for 
E = 5 x and for u = 2.0, AT = - 1.5 and Ri = 0.5. The results 
show, for increasing E ,  that the growth rates decrease and that the meridional 
wavelengths increase. Both of these results are what we would expect, in general, 
when the effects of viscous dissipation are increased. This effect can also be seen in 
figure 8 for the pure symmetric modes for two values of the Richardson number. The 
results in figure 13 also show that the magnitude of the 2-component of the most 
unstable wavenumber vector decreases with decreasing E.  However, the direction of 
tilt (the sign of k) does not change with E .  The results suggest, for the most-unstable 
modes, that k+O as E+O. 

(see figure 12) showed substantial differ- 

and 2 x 

Since the results for cr = 1 and E = 
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k 
FIGURE 14. The growth rates w, as a function of k for u = 1, AT = -0.2, Ri = 0.8 for 

E = 10-3 (-.-.-),5 10-4 (---- ), 2 x 10-4 (-.-.-.-.-.- 1. 

ences from the results of other values of B for E = we decided to acquire more 
results for u = 1 over an extended range of E. Figure 14 shows growth rates of several 
meridional waves as function of k for E = for (T = 1.0, 
AT = -0.2 and Ri = 0.8. This value of Ri was chosen since, as shown in figure 12 (a), 
it is the value at which the largest wi(max) occurs. The results show that  for E = 
and 5 x fO-4 the regular baroclinic waves (1 = 0) possess the maximum growth rates 
and hence dominate. However, as E is decreased to E = 2 x the symmetric 
modes begin to possess the largest growth rates and hence dominate. This result is 
significant in that it shows that as E+O the surprising result of the dominance of 
the regular baroclinic modes is no longer true. Again as in the case of figure 13, when 
the symmetric modes are dominant they have smaller meridional wavelengths. These 
results indicate, although a definitive conclusion cannot be based on this one value 
of Ri, that as E-tO the inviscid results of Stone (1970) are obtained (see 5 1 ) .  We have 
not surveyed the dependence of the direction of the tilt (the sign of k) of the 
most-unstable waves as a function of E, but the results of figure 14 show that k is 
zero for the symmetric mode of largest growth rate. 

Busse & Chen (1981) showed that, when zonal structure is allowed, Ri, increases 
above the pure symmetric value. Their analysis was limited to small values of k, but 
they pointed out that owing to this effect the range of Ri for which the instability 
occurs may be increased significantly beyond the limits observed by McIntyre (1970). 
Since our numerical procedure is not limited to small k, we decided to investigate 
this suggestion by extending the work of Busse & Chen to larger values of k. Figure 
15 shows will  as a function of Ri for several values of k for u = 2.0, A T  = - 1.5, 
E = and for 1 = 6. The choice of 1 = 6 is based on previous work (AF) which 
showed a maximum value of Ri, close to this value of 1. In  figure 15 the value of Ri, 
for a specific value of k is the value of Ri a t  which the growth-rate curve intercepts 
the Ri-axis. Figure 16 shows Ri, versus k for two values of 1. For both l = 4 and 6 

5 x loF4 and 2 x 
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FIGURE 15. The normalized growth rate as a function of Ri for I = 6, u = 2.0, 
and selected values of k. AT = - 1.5. E = 
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k 

FIGURE 16. The critical Richardson number Ri, as a function of k for 1 = 4 and 6, 
u = 2, AT = - 1.5, and E = 

the qualitative functional behaviour of Ri, with k is similar. At first Ri, increases 
with increasing k and rises above its value for k = 0. However, for still relatively small 
values of k, Ri, reaches a maximum value which is only about 10 yo greater than its 
value a t  k = 0, and then Ri, declines monotonically as k increases further. Thus, we 
have shown, for the parameters of this computation, that  the range of symmetric 
baroclinic instability is increased but not by much when zonal structure is permitted. 

4. Conclusions 
In  this work we have been concerned with the three-dimensional baroclinic 

instability problem for Ri = O(1). We have extended the inviscid analyses of Stone 
(1966, 1970, 1971) by adding viscous and thermal diffusion effects to the basic state 
and to the stability analysis and by satisfying realistic boundary conditions. Stone 
pointed to Ri as the significant parameter and calculated the values of Ri a t  which 
the transition between the conventional baroclinic instability, symmetric baroclinic 
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instability, and the Kelvin-Helmholtz instability occur (see 3 1) .  This study covers 
the ranges 0.135 d Ri d 1 .1 ,  0.2 < u < 5.0 and 2 x < E < 2 x lop3. We found 
the same general trend as Stone, namely the dominance of symmetric baroclinic 
instability over zonal baroclinic instability except for u = 1 and E 2 5 x lop4. We 
found for u $. 1 that zonal instability dominates for Ri > 0.825 and symmetric 
instability dominates for Ri < 0.675. For u = 1 and E 2 5 x in the range 
0.3 < Ri < 0.9, zonal instability is always preferred. However, for u = 1 and 
E = 2 x 

We found further that the growth-rate maxima of the symmetric modes occur for 
waves with weak zonal structure. This means that the wavefronts are inclined at 
a small angle to the basic-state eastward flow (x-direction) and that the wavenumber 
vector is inclined at the same angle to the north (y-direction). For u > 1.1 and 
Ri = 0.5, and E = lou3, the wavevector has a component towards the east and for 
u < 1 . 1  a component towards the west. 

Stone (1970) found for his inviscid model that  the preferred symmetric mode is pure 
symmetric. Our results for finite E indicate that the zonal structure of the preferred 
symmetric mode becomes progressively weaker as E approaches zero. 

Busse & Chen (1981) found, in the limit of small E and for small k, that the mode 
of symmetric instability a t  maximum Ri, has weak zonal structure and hence is 
inclined at a small angle to the direction of the basic-state flow. This result is 
analogous to what we found €or the preferred symmetric modes. Busse & Chen also 
found that Ri, is increased over its value for k = 0 and they speculated that for larger 
k a substantial increase in the range of instability may be obtained. Our results, which 
are valid over a wider range of k, show that this is not so; only a small increase in 
Ri, occurs a t  small k. Our results show that for values of Ri close to  the values of 
Ri, for symmetric instability, the zonal instability has much larger growth rates and 
hence will dominate. This result reduces the significance of previous discussions on 
the importance of Ri,. 

We have shown that the nearly symmetric modes of maximum growth rate differ 
very slightly from the pure symmetric modes. For this reason i t  is unlikely that they 
represent a new type of instability. 

Let us now consider the energetics of symmetric baroclinic instability. The energy 
sources can be thermal or inertial or a combination of the two. For thermally driven 
flows potential energy is the ultimate energy source in all cases.'Busse & Chen (1981) 
commented on the energetics of the preferred symmetric baroclinic modes with weak 
zonal structure. With their limited asymptotic analysis, they showed that the 
inclusion of a finite non-zero value for k leads to an additional y-component of the 
perturbation velocity when u -+ 1 .  They argued that this additional flow enables the 
perturbations to  draw more energy from the basic state. When u > 1 the additional 
source is the potential energy of the basic state, and when u < 1 i t  is the kinetic energy 
of the basic state, Generally speaking, a finite value of k allows the disturbance motion 
to be more perpendicular to the mean flow. 

The results of our growth-rate calculations for non-marginal, weak azimuthal 
waves for u -+ 1 (or more accurately 1 .1 )  are consistent with the above arguments. 
Also the analysis of Busse & Chen depends on the fact that, as E+O, the value of 
k+O.  Again our results for less restricted waves show this trend. 

Our results for the case u = 1 show that the inclusion of finite k a t  moderate values 
of E does not alter the dominance of conventional baroclinic instability. It appears 
that this result is due to the absence of double-diffusive effects a t  u = 1. 

It is of value to ask what the new results obtained in this study tell us about the 

symmetric modes with short wavelength dominate. 
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possibility of realizing symmetric baroclinic instability in the laboratory. Our model 
is physically realistic in that the full set of governing equations, including viscous 
and thermal diffusion, was used and in that realistic boundary conditions on the 
horizontal surfaces were satisfied. The model departs from laboratory reality in that 
a linear stability analysis rather than a nonlinear analysis was performed. Further, 
a horizontally infinite layer is, of course, unrealizable, but a shallow and wide 
cylindrical annulus of fluid can be realized. Although the results of 3 3 indicate that 
the preferred mode of symmetric instability occurs with a large zonal wavelength and 
is not purely symmetric, this may not be so in finite cylindrical geometry when the 
azimuthal wavelength exceeds the circumference. We have constructed an apparatus 
in which a shallow layer of liquid is held between two horizontally mounted disks. 
Radial temperature gradients with different imposed vertical temperature differences 
can be maintained on the disks. The disks are made of sapphire material, their 
transparency allowing observation of the liquid. Sapphire is also a good thermal 
conductor allowing for accurate temperature boundary conditions. The total apparatus 
is rotated on a turntable. We have started a systematic search within the parameter 
ranges of the theoretical work presented in this paper, in particular 0 < Ri < 1 ,  and 
are looking for convective rolls with radial structure and weak or no azimuthal 
structure. 

All of the computations reported in this paper were performed a t  the University 
of Tennessee computing centre. Knoxville, whose generosity is greatly appreciated. 
Partial funding for these computations was provided by the University of Tennessee 
Space Institute. Basil N. Antar wishes to acknowledge receipt of contract NAS8-33386 
from NASA/Marshall Space Flight Center which he held during the performance of 
this investigation. This research was supported by the Global-Scale Atmospheric 
Processes Research Program of the Office of Science and Applications, NASA 
Headquarters, Washington, D.C. 
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